مقایسه شبکه‌های عصبی مصنوعی، درخت تصمیم، تحلیل تشخیصی و رگرسیون لوجستیک در پیش‌بینی بارداری ناخواسته در مادران مولتی‌پار شهر خرم‌آباد

نویسندگان

  • آذربر, علی آمار گروه آمار، دانشکده علوم ریاضی و کامپیوتر دانشگاه صنعتی امیرکبیر، تهران، ایران
  • ابراهیم زاده, فرزاد آمار زیستی گروه بهداشت عمومی، دانشکده بهداشت و تغذیه دانشگاه علوم پزشکی لرستان، خرم‌آباد، ایران
  • بختیار, کتایون گروه بهداشت عمومی، دانشکده بهداشت و تغذیه دانشگاه علوم پزشکی لرستان، خرم‌آباد، ایران
  • حسینی, آغافاطمه آمار زیستی گروه آمار زیستی، دانشکده بهداشت دانشگاه علوم پزشکی ایران، تهران، ایران
  • زایری, فرید آمار زیستی، عضو مرکز تحقیقات پروتئومیکس، دانشکده پیراپزشکی دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
  • وهابی, نسیم آمار زیستی گروه آمار زیستی، دانشکده علوم پزشکی دانشگاه تربیت مدرس، تهران، ایران
چکیده مقاله:

Background and Objective: Unwanted pregnancy is a pregnancy that is considered to be unwanted by at least one member of the couple, and has adverse consequences for the family and community. Using four classification models, this study predicted unwanted pregnancy in the urban population of Khorramabad and compared these classification models. Materials and methods: In this cross-sectional study, 467 multiparous pregnant women attending the urban health care centers of Khorramabad in 2011 were selected using stratified and cluster sampling and risk factors were collected. The logistic regression model, discriminant analysis, decision trees, andCART artificial neural networks, along with the SPSS and MATLAB software were applied in data modeling. The indices of sensitivity, specificity, area under the ROC curve, and accuracy rate were applied to compare the models. Results: The prevalence of unwanted pregnancy was 32.3%. Based on the index of area under the ROC curve,ROC the best models were artificial neural networks (0.741), decision tree (0.731), logistic regression (0.712) and discriminant analysis (0.711). The highest. sensitivity was found for decision tree model (73.5%), and the highest specificity was for artificial neural network (62.3%). Conclusion: Given the relatively high prevalence of unwanted pregnancy in Khorramabad, the revision of the family planning programs seems to be inevitable. Moreover, in selecting the best classification method, decision tree and logistic regression are recommended when the researcher is interested in better interpretability of the results, and the model of neural networks is recommended when a higher prediction power is intended.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه شبکه های عصبی مصنوعی، درخت تصمیم، تحلیل تشخیصی و رگرسیون لوجستیک در پیش بینی بارداری ناخواسته در مادران مولتی پار شهر خرم آباد

مقدمه و هدف: بارداری ناخواسته، نوعی از بارداری است که دست کم از نظر یکی از زوجین، ناخواسته باشد و پیامدهایی نامطلوب را برای خانواده و اجتماع به همراه دارد. در این مطالعه با استفاده از چهار مدل طبقه بندی، وقوع بارداری ناخواسته در جمعیت شهری خرم آباد پیش بینی شد و مدل ها مورد مقایسه قرارگرفتند. مواد و روش ها: در این مطالعه مقطعی، 467 نفر از مادران باردار مولتی پار مراجعه کننده به مراکز بهداشتی- د...

متن کامل

مقایسه مدل درخت تصمیم و رگرسیون لوجستیک در ارزیابی پوکی استخوان

Introduction: Early detection of osteoporosis is a key to preventing of it; but recognition, without the use of appropriate diagnostic methods, due to the complexity of risk factors and gradual bone loss process, is problem. The purpose of this study is to develop and efficiency evaluation a predictive model of osteoporosis using decision tree technique as a diagnostic method based on available...

متن کامل

مقایسه بین شبکه عصبی مصنوعی و تحلیل رگرسیون در برآورد مدت زمان قطع درخت

قطع درخت در بین مؤلفه‌های بهره‌برداری، اهمیت زیادی دارد. برآورد تولید تجهیزات جنگلی، بخش مهمی از مدیریت هزینه‌ها در یک واحد جنگلداری است که با کاهش هزینه‌های عملیات همراه است. به عبارت دیگر، هزینه‌های بالای سرمایه‌گذاری در بهره‌برداری جنگل، دلیل خوبی برای تحقیقات مهندسی جنگل و همچنین مدل‌سازی زمان می‌باشد. روشهای زیادی مانند انواع رگرسیون‌ها، منطق فازی، شبکه‌های عصبی و غیره برای پیش‌بینی زمان ق...

متن کامل

مقایسه کاربرد شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون مؤلفه‌های اصلی و رگرسیون خطی چندگانه جهت مدل‌سازی شاخص کیفیت هوای شهری

شاخص کیفیت هوا ابزار کلیدی جهت آگاهی از کیفیت هوا، نحوۀ اثر آلودگی هوا بر سلامت و روش‌های محافظتی در برابر آلودگی هوا است. هدف اصلی این تحقیق مدل‌سازی و برآورد شاخص کیفیت هوا از طریق شبکه عصبی مصنوعی، درخت تصمیم، رگرسیون خطی چندگانه و رگرسیون مؤلفه‌های اصلی است. جهت محاسبه شاخص کیفیت هوا از داده‌های هواشناسی و آلودگی هوای ثبت شده در ایستگاه تجریش و قلهک شهر تهران در دوره زمانی 1385 تا 1390 استف...

متن کامل

مقایسه بین شبکه عصبی مصنوعی و تحلیل رگرسیون در برآورد مدت زمان قطع درخت

قطع درخت در بین مؤلفه های بهره برداری، اهمیت زیادی دارد. برآورد تولید تجهیزات جنگلی، بخش مهمی از مدیریت هزینه ها در یک واحد جنگلداری است که با کاهش هزینه های عملیات همراه است. به عبارت دیگر، هزینه های بالای سرمایه گذاری در بهره برداری جنگل، دلیل خوبی برای تحقیقات مهندسی جنگل و همچنین مدل سازی زمان می باشد. روشهای زیادی مانند انواع رگرسیون ها، منطق فازی، شبکه های عصبی و غیره برای پیش بینی زمان ق...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 22  شماره 116

صفحات  43- 56

تاریخ انتشار 2015-05

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023